
ht. J. Heat Mass Transfer. Vol. 3, pp. l-25. Pergamon Press 1961. Printed in Great Britain. 

LAMINAR NATURAL CONVECTION FLOW IN 

MAGNETO-HYDRODYNAMICS 

G. POOTS 

Department of Theoretical Mechanics, Bristol University 

(Received I August 1960, aftd in revised form 28 December 1960) 

Abstract-This paper deals with the two-dimensional laminar natural convection flow of an electrically 
conducting viscous fluid, such as mercury or liquid sodium, in the presence of electric or magnetic 
fields. Two different flow regimes are discussed. The first example considered is the steady fully de- 
veloped natural convection flow, with and without heat sources, between two long parallel plane 
surfaces with uniform magnetic field applied normal to the surfaces. The plane vertical surfaces are 
open at both ends to the ambient fluid and are maintained at constant temperatures different from 
that of the ambient fluid. Tables are given from which the fully developed temperature, velocity and 
induced magnetic fields may be found. Flow characteristics such as the net mass flow and wall Nusselt 
numbers are also evaluated. 

The second example considered is the steady two-dimensional natural convection flow set up by 
Joule heating when a direct current flows in the axial direction through a horizontal circular tube 
filled with an electrically conducting viscous fluid. The outside surface of the tube is maintained at 
constant temperature by a coolant which is assumed to be a non-conductor and non-magnetic. The 
influence of the non-uniform convection flow on the temperature distribution and wall Nusselt number 

is calculated. 

R&sum&Get article traite de l’tcoulement de convection naturelle laminaire a deux dimensions 
dam un fluide visqueux conducteur tel que le mercure ou le sodium liquide, en presence de champs 
magnetiques ou electriques. Deux regimes d’ecoulement differents sont Ctudies. Le premier exemple 
consider6 est celui de la convection naturelle, en regime permanent, avec ou sans source de chaleur, 
entre deux longues surfaces planes paralleles normalement auxquelles est applique un champ magnetique 
uniforme. Les surfaces planes verticales sont ouvertes aux deux extremites vars le fluide ambiant et 
sont maintenues a des temperatures constantes, differentes de celle du fluide ambiant. Des tables, 
a partir desquelles on peut trouver la temperature de regime, la vitesse et les champs magnetiques 
induits, sont don&es. Des caracteristiques de l’icoulement, telles que le debit massique et le nombre 
de Nusselt a la paroi sont Cgalement Cvaluees. 

Le deuxieme exemple consider-6 est celui de la convection naturelle a deux dimensions qui s’etablit 
dans le MS d’un chauffage par effet Joule, quand on fait circuler un courant continu dans l’axe d’un tube 
horizontal, a section circulaire, rempli d’un liquide visqueux conducteur. La surface exterieure du 
tube est maintenue a temperature constante par un refrigerant que l’on suppose non conducteur et non 
magnttique. L’influence d’un Ccoulement de convection naturelle non-uniforme sur la distribution 

des temperatures et le nombre de Nusselt a la paroi est calculte. 

Zusammenfassung-Die Arbeit behandelt die zweidimensionale, laminare, freie Konvektionsstromung 
in einer elektrisch leitenden, viskosen Fltissigkeit, wie Quecksilber oder fltissigem Natrium in Gegen- 
wart von elektrischen oder magnetischen Feldern. Zwei verschiedene Stromungsarten werden 
besprochen: Als erstes Beispiel die station&e, voll ausgebildete, freie Konvektionsstromung mit und 
ohne Warmequellen zwischen zwei langen parallelen ebenen Flachen mit gleichmbsigem, senkrecht 
zu den Oberflachen wirkendem Magnetfeld. Der Spalt zwischen den ebenen, senkrecht stehenden 
Oberflachen ist fur die umgebende Fliissigkeit an beiden Enden geoffnet. Die Oberfllchen werden auf 
konstanten Temperaturen gehalten, die sich von der Temperatur der angrenzenden Fliissigkeit 
unterscheiden. Aus angegebenen Tabellen klinnen Temperatur-, Geschwindigkeits- und induzierte 
Magnetfelder ersehen werden. Weiterhin sind charakteristische Stromungsgrossen wie Mengenstrom 
und Nusseltzahl in Wandnahe berechnet. 

Als zweites Beispiel wird die station&e zweidimensionale freie Konvektionsstromung betrachtet, 
die infolge Joulescher Erwarmung auftritt, wenn Gleichstrom in Achsialrichtung durch ein 
waagerechtes, mit elektrisch leitender viskoser Fliissigkeit gefiilltes Rohr von Kreisquerschnitt fliesst. 
Die Rohraussenfllche wird durch ein nichtleitendes und unmagnetisches Kiihhnittel auf konstanter 
Temperatur gehalten. Der Einfluss des ungleichfijrmigen Konvektionsstromes auf die Tempera- 

turverteilung und die Nusseltzahl in Wandnlhe ist angegeben. 

A 
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~oTaIw6--~ CTaTbe p3CCMaTpUBaeTCFI ABYXMepHbIi-i JIaMHH3pHbItiKOHBeKTHBHbIi%IIOTOKB 

YCJIOBPIAX eCTeCTBeHHOr0 ABMHteHElH 3JIeKTpWIeCKII IIpOBOAfIUefi BSIBKOfi ItEIIAKOCTH. 

Hanpaniep, p~y~p IIJU HaTpan B ~MAKOM COCTORHIIH. HpeaycMaTprrsaeTcfl Haaaqrre 
3JIeKTpWIeCKIlX MJIH M3rHIITHbIXIIOJIeti. P3CCM3TpHB3IOTCR~Ba pS?GIWIHbIX pe-WIMa IIOTOK3. 

B nepeohr cnysae-cTaqaoHapa& IIOJIHOCTbIO J'CT3HOBHBIIIetiCR IIOTOK R J'CJIOBHfIX 

eCTeCTBeHHOii KOHBeK~IlHMeHEA~~B~MR~~HHHbIMH~~OCKO-~3p3Jl;leJlbHbIMll~OL(epXHOCTFIM~ 

IIpII HUIll~llJI IICTOqHRKOB TeIIJB IUIIl 6e3 HMX II C p3BHOMepHbIM MarHIITHbIM IIOZIeM, 

IIepIIeHEIiKJ-.IfIpHbIM IE IIOBepXHOCTR IIJIaCTHIIbI. TeMIIepaTypa IIJIOCKIIX BepTMKaJIbHbIX 

~OBepXHOCTe~OT~IIYH3OTTeM~ep~T~pbIOKp~~tca~~e~HEB~KOCT~I,CKOTOpOiiCO~pLII~3C3H)TCR 

o6a KOHI(3 IIJIaCTISHbI. 113 IIpHBexeHHbIX Ta6nnq MOHEHO HatiTvl IIOJIHOCTbIO J%T3HORHBIIIIIeCH 

IIOJIfl TeMIICpaTj'pId, CKOpOCTM, 3 TaK?Ke RHJIYKTHpOBHHbIe MarHRTHbIe IIO.WI, BbIqnCneIIhI 

x3paKTepIICTLIKII YHCTOrO IIOTOKa MaCCbI II WICJIO HyCCeabTa CTeHKII. 

BO UTOpOM CJlJ'We paCCMaTpHl33eTCfI CTaIJIIOHapHbIti JJByXMepHbIti IIOTOK B JYLWBI~IIX 

eCTeCTReHHOfi KOHBeKuEIM, coanaaaeMnrt narpesannew np11 npoxo~neKwI IIocTonKHoro 

TOKEI 3 aKCBa.'lbHOM H3IIpaBJIeHIlEl Yepe3 l-OpH3OHTaZIbHyKl KpJ'IYIyIO TPY6Y, 33IIOZIHeHHyIC 
3neKTpwIecKa IIpOBO~EIIQefi BFI3KOti )t(llAKOCTIO. 'FeNIIepaTJ'pEi BHeIlIHefi IIOBepXHOCTM 

Tpy6bI IIO~gepxtHBaeTCfI IIoCTORHHOti IIpH IIOMOIqa OXJIa~J@KNL(ei? CpeRbI, IiOTOpYIO 

IIpllHMMWOT IIeIIpOBO~FI~efi II HeMBrHHTHOti. BbIs&fcneHo BJIHHHHe HepaBHOMepHOrO 

KUIIBeKTLIBHOrO IIOTOKa Ha p3cIlpeneJHHe TeMIIepaTypbI T/I Ii3 YMCJIO IfS'CCeJIbTa CTRHKH. 
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NOMENCLATURE 
and c.g.s. system used throughout. 
dimensionless magnetic vector 
potential; 
characteristic length; 
specific heat at constant pressure ; 
electrical intensity; 
gravitational force per unit of mass; 

Grashof number, F2- pg6wa3 (Example I) 

or ~!@!““u~ (Example II); 
km2 

magnetic Grashof number, 4?ro;u,vG; 
magnetic intensity; 
current density; 
dimensionless parameter, PGKA; 

dimensionless parameter @; 
CP 

thermometric conductivity; 

Hartmann number, p8Ho a J ” ; 
PV 

Nusselt number; 
pressure; 
pressure p minus the hydrostatic 
pressure pa ; 

Prandtl number ED!!. 
k ’ 

s reference condition (usually taken as 
the hydrostatic condition); 

heat added by heat sources; W wall condition; 
fluid velocity ; 1 and 2 wall condition at y = 0 and Q 
temperature ; respectively for Example I, and conditions in 
Cartesian co-ordinates ; the fluid and coolant respectively for Example 

Greek symbols 

dimensionless heat source parameter; 
coefficient of volumetric expansion; 

dimensionless quantity, z:; 

dimensionless local tempeiature distri- 
bution; 
temperature difference, T - T,; 
ratio of wall temperature differences, 
I!? U'l . 

8, ’ 
d”ykamic viscosity; 
magnetic permeability; 
kinematic viscosity; 
magnetic viscosity; 
fluid density; 
electrical conductivity : 
dimensionless group, 1/4n~~~~v; 
dimensionless group, 1 /PKAx; 
dimensionless stream function; 
magnetic scalar potential. 

cylindrical co-ordinates. II. 

Subscripts 
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1. INTRODUCTION AND BASIC THEORY OF 
TWO-DIMENSIONAL NATURAL CONVECTION 

IN MAGNETO-HYDRODYNAMICS 

THE PROCESS of natural convection flow will 
occur when density variations due to heating 
exist in a fluid, and is generated entirely by the 
action of body forces due to gravity. This 
process has many applications as a mechanism 
for heat transfer and, for example, plays a major 
role in the cooling of nuclear power plants where 
liquid sodium is used as a coolant. It is the 
purpose of this paper to investigate some aspects 
of two-dimensional laminar natural convection 
flow of an electrically conducting viscous fluid, 
such as mercury or liquid sodium, in the 
presence of additional forces due to imposed 
electric and magnetic fields. In general two types 
of problem require investigation. In the first 
type if a natural convection flow exists we wish 
to know how this is modified, i.e. changes in 
heat transfer and net mass flow, when electric 
and magnetic fields are applied. The second type 
of problem which may occur is one in which the 
natural convection flow is a direct consequence 
of the applied electric and magnetic fields and 
would not exist in the absence of these fields. 
In this case temperature gradients are caused 
by Joule heating if the region under consideration 
is enclosed or partially enclosed by solid 
boundaries. 

The paper treats two relatively simple two- 
dimensional natural convection flow regimes, 
representative of the above types. In the first 
example results are obtained for the steady fully 
developed natural convection flow, with and 
without heat sources, between two long parallel 
plane surfaces with uniform magnetic fields 
applied normal to the surfaces. The plane vertical 
surfaces are open at both ends to the ambient 
fluid and are maintained at constant tempera- 
tures different from that of the ambient fluid. 
This configuration is a modification of the 
magnetic field-free case as discussed by Ostrach 
[l] and the analysis of this example follows 
Ostrach’s treatment of the thermal convection 
problem and that of Cowling [2] in the discussion 
of the Hartmann-Lazarus flow of an electrically 
conducting viscous fluid between parallel flat 
plates. The special case when the arithmetic 
average of the plate temperatures is equal to the 

temperature of the ambient fluid has been 
discussed by Gershuni and Zhukhovitskii* [3]. 
In this reference the viscous and Joulean dissipa- 
tion have been neglected in the equation of 
thermal energy transport. 

In the second example results are obtained 
for the natural convection flow regime set up 
by Joule heating when a direct current is passed 
axially through a horizontal cylindrical tube 
filled with conducting fluid. The outside surface 
of the tube is maintained at constant tempera- 
ture by a coolant which is assumed to be a non- 
conductor and non-magnetic. End effects near 
the electrodes are neglected, so that it is assumed 
that the tube is sufficiently long to allow steady 
two-dimensional natural convection flow near 
the centre to be established. 

Consider now the magneto-hydrodynamic 
equations and the equation of thermal energy 
transport relating to steady natural convection 
flow. The usual assumptions are made with re- 
gard to the physical properties of the fluid, i.e. 
the viscosity, electrical conductivity and magnetic 
permeability etc. are independent of the tempera- 
ture and the strength of the magnetic or electric 
fields involved. The density of the fluid is 
assumed constant except in the case of density 
variation with temperature in producing the 
buoyancy force. The basic equations in e.m.u. 
and c.g.s. units are, in the usual notation, 

div q = 0, (1.1) 

(q.V)q = - l/P VP, + vv2q 

+;JAH-P(T-Z’T,)g, (1.2) 

pc,q.VT= kV2T+ $ + Q + Dj,, (1.3) 

together with the electro-magnetic equations 

div H = 0, (1.4) 

curl H = 47~7, (1.5) 

curl E = 0, (1.6) 

and finally Ohm’s law for the moving fluid 

J=~(E+p,qAH). (1.7) 

l The author is indebted to a referee for this reference. 
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Here pa is the pressure of the fluid minus the 
hydrostatic pressure, @ is the coefficient of 
volumetric expansion, Q is the quantity of heat 
added by heat sources per unit of volume, and 
ip, is the viscous dissipation function. Further- 
more equation (1.3) is valid only when the 
temperature difference (T-T,) is small compared 
with the hydrostatic temperature T,, and all 
physical constants appearing in equations (1.1) 
to (1.7) must be evaluated at the hydrostatic 
condition. 

These equations can now be reduced to their 
simplest two-dimensional form when the 
following conditions are satisfied within the 
fluid : 

(i) the pressure gradient in the z-direction is 
zero i.e. (~~~~~2) = 0, 

(ii) the velocity and magnetic field components 
are 

q = Mx, v), a(x, v), 01, (1.8) 
and 

H = Wz (x, Y>, f& (x, y), 01. (I-9) 

On using this assumed form for H equation (I .5) 
implies that J, = J, = 0 and 

equation (1.6) implies that 

aE; aE, 

ax ay =o 

and E, = E,, a constant; equation (1.7) 
now implies on using (1.8) and (I .9) that 
Em = E, = 0 and J, = a[& + &uIJ11 - vH,)]. 
Thus subject to the above conditions the equa- 
tions governing the steady two-dimensional 
natural convection flow, taking the x-axis in 
the vertical direction, are 

(1.10) 

au au 1 aPa 
uY&+v,=-p~ 

+ vV2u - $ J, I&, + @g(T- T,), (1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

where @, is the two-dimensional form of the 
dissipation function 

The boundary conditions for equations (1.10) 
and (1.16) will be derived later. 

2. EXAMPLE I: FULLY DEVELOPED NATURAL 

CONVECTION FLOW BETWEEN PARALLEL 

FLAT PLATES IN A MAGNETIC FIELD 

2(a) Statement of problem and gocer-ning 

The simplified configuration to be investi- 
gated in this section is the fully developed 
laminar flow of an electrically conducting 
viscous fluid, with and without heat sources, 
between two parallel flat plates orientated in the 
vertical direction (taken to be the x-direction) 
and distance a apart (i.e. y = 0 and a). The plate 
surfaces, which are open at both ends to the 
ambient fluid, are maintained at constant 
temperature T = To at y = 0 and T = Tl at 
y = a respectively, and in general To # T, # T,, 
the ambient temperature. A uniform magnetic 
field of intensity H0 is applied normal to the 
plates, i.e. parallel to Oy and perpendicular to 



LAMINAR NATURAL CONVECTION FLOW IN MAGNETO-HYDRODYNAMICS 5 

Ox and Oz respectively. If the dimensions of 
the plates are large compared with the distance 
between them such that fully developed flow 
exists everywhere (except near the edges of the 
plates) then as in the Hartmann-Lazarus flow 
(see Cowling [2]) a solution of the basic equa- 
tions (1 .lO) to (1.16) is possible provided 
u = u(y), u = 0, T = T(Y), Hz = H,(Y) and 
H, = Ho, the applied field. The equations for 
steady motion now become 

CL $ + /+g(T- Ts) - tdfdz = 2, (2.1) 

,LL~ J,H, = apd 
aY ’ 

(2.2) 

J, = -& ;fj =cJ(E,,+/L,H~u), (2.3) 

and 

d2T du 2 
kd3+p G 

i 1 

+ Q + G, + ~eHou)~ = 0. (2.4) 

Now we are interested only in the case for 
which there is zero axial pressure gradient i.e. 
apd/8x = 0 and thus on using equations 
(2.2) and (2.3) the momentum equation yields 

CL g2 + BP0 - 7-s) 

- UP, H,(& + ~eH,,u) = 0. (2.5) 

The boundary conditions associated with (2.4) 
and (2.5) are 

and 

u(0) = u(a) = 0, T(0) = T,, 

T(a) = Tl. 1 
(2.6) 

A solution of equations (2.4) to (2.6) may now 
be obtained for any specified value of the con- 
stant electric field E, and this would, on using 
equation (2.3), imply a flow of current in the 
z-direction. Suppose now the channel is bounded 
by electrically insulated walls in the planes 
z = i d, where d $ a. For this model a non- 
uniform induced electric field is set up since 
J, must vanish at z = f d. Equations (2.4) 
and (2.5) no longer apply to this situation 
since the condition that E, must be constant is 

violated. To represent this model as closely as 
possible Cowling [2] suggests that the constant 
E,, is adjusted to make the total current g J,dy 
flowing between z = f d vanish. This gives 

E, = _ e sau dy (2.7) 
0 

which is consistent with the boundary condition 
H,(O) = H,(a) = 0. This follows from the 
condition that there must be no discontinuity 
in the tangential component of H at the solid 
interfaces y = 0, a. Thus for a long rectangular 
duct, having aspect ratio 2d/a 9 1, orientated 
in the vertical direction and with a uniform 
magnetic field imposed perpendicular to the 
isothermal walls y = 0, a, the steady fully 
developed natural convection tlow near the 
central axis of the tube (z = 0) and sufficiently 
far away from the open ends, is determined by 
the equations 

CL $ + pPg(T - T,) 

(2.9) 

subject to the boundary conditions (2.6). The 
terms in (2.8) denote the viscous, buoyancy and 
Lorentz forces respectively; the terms in (2.9) 
denote the transport of thermal energy by 
conduction, viscous dissipation, heat generation 
by heat sources, and Joulean dissipation. We 
note also that the Lorentz force opposes the 
buoyancy force, which leads to an effective 
decrease in velocity or net mass flow as Ho 
increases. 

As the units of field strength, temperature 
and velocity we choose Ho, 8, = (To - T,) and 
v/a respectively. Dimensional analysis then 
leads to the introduction of four dimensionless 
parameters : the temperature difference ratio 

)( = (Tr - Ts) = !! . 

(To - Td 00 ’ 
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the heat source parameter a = Qae/ktI,; the 
Hartmann number M = &Z,+Z(U/,Z#‘~; and, 
due to Ostrach [I], the dimensionless group 
K = PGKA where P = (pc~v/k) is the Prandtl 
number, G = (~ge~~31~) the Grashof number 
(8, = 8, or Q, and the dimensionless group 
KA = (fig&,). We now introduce the new 
dimensionless variables 

0’1 - Ts) 
Y=yfa, @=K(T,__~), U=KAP;V~U. 

(2.10) 

When these substitutions are made in the basic 
equations of motion (2.8) and (2.9) we obtain 

UfV-@-M(U- 
s 

1 UdY) = 0, (2.11) 
0 

6” + (U’)2 +M2(U - 
s 

’ UdY)2 + aK = 0, 
0 

(2.12) 

subject to the boundary conditions 

and 
U(0) = U(1) = 0, e(O) = K 

@(l) = AK. 1 
(2.13) 

In equations (2.11) and (2.12) the prime denotes 
differentiation with respect to Y. 

It remains now to choose representative values 
of a, ir, M and K applicable, for example, to 
liquid metals. Without loss of generality we shall 
take a = 0, 10 and 100, h = --l(l)2 and 
M = 0,2,4 and 10. However, as seen from Table 
1, we are interested only in a range of small or 
moderately small values of K. For example, 
considering the convection flow of mercury in a 
gravitational field at room temperature (2O”C), 
and taking 8, = T,, - T, = 5°C and the plates 
5 cm apart (i.e. a = 5), then K = 1.5; for liquid 
sodium, if T, = 200°C 0, = 100°C and a = 10 
then K = 144. In the next section series ex- 
pansions in powers of K are obtained for U and 
0, valid for small K and all values of the re- 
maining parameters a, A and M. 

2(b) Series expansion for small K 
A series solution for U and 0 may be obtained 

by taking 

Table 1 

/ Mercury, 20°C i 
Liquid 

sodium, 
/ 2OO’X 
--_- 

Density, p (g/cm3) : 13.55 
Coefficient of cubical 1 

j 0934 

expansion, /3 (/“C) 1 1.82 >: 1O-4 2.2 v IO-* 
Dynamic viscosity, p 

(g/cm se4 
/ 

Kinematic viscosity, v 

/ I.53 :i 10-Z 4 5 ’ IO-” 

@m%4 / 1.13 _’ \ IO-3 / 4197 “ lo- s 
Permeabifity,p, (e.m.u.) 1 1 
Resistivity, R 

(ohms-cm) 1 9.58 x 1O-5 
Specific heat, c,(cal/“C) i 3.33 x 10ea 

/ 1.36 . 1O-5 
0.32 

Thermal conductivity, 1 
K @al/cm sec”C) 1.90 A IO-2 0.195 Prandtl number, / 

! 

p = !?!tJ i 2.68 IO-2 ’ 7.38 s W3 
, 

2z 

U = K C K=&(Y) \ 
n = 0 

i (2.14) 
and 0 = K ? K,@,(Y). 

n = ” J 

On substituting the expansions (2.14) into equa- 
tions (2.11) to (2.13) and equating coefficients 
of like powers of K, there results a set of differen- 
tial equations of which the first few are : 

0: + a = 0, O,(O) = 1, O,(l) = A; 1 

U;’ + 0, - M2(Uo - j; U,d Y) = 0, 
1 
(2.15) 

U,(O) = U,( 1) = 0: J 

QI’ + (U;,* + M2(U, - & U,d Y)2 = 0,) 

O,(O) = O,(l) = 0; I 

U;‘+O,- Ma(u;-j;U,dY)==O. L t(2.W 

U,(O> = u1 (1) = 0. i 

Equations (2.15) yield the fully developed velocity 
and thermal profiles neglecting the viscous and 
Joulean dissipation.* The inclusion of equations 
(2.16) refines this approximation to include the 
dissipation functions. 

* Note that the case A = - I is that treated by Gershuni 
and Zhukhovitskii [3]. 
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For the zeroth-order functions W, and @, we 
obtain 

8, = 1 + b,Y + b*YZ, (2.17) 

M3U, = B,S,(M, Y) + BI S,(M, Y) 

+ b, 4 baYa, (2.18) 

where 

S&M, Y) = sinh M - sinh MY 

-+- sinh M( Y - 11. 

S,(M, Y) = sinh M + sinh MY 

+ sinh M( Y - I), 

The first-order functions are obvjously more 
tedious to evaluate. They can be expressed as 

where 

C, = B:, C, 2: B;, C3 = 2B,Bz, C, =2B,, 

C,=2& and C,=== I. 

61 = #(a + 2X - 2), b, = -a/2, The subsidiary functions gtt( Y) andf,( Y) are: 

B __ Ma(6 + 6X + a - 12a/W) 
2-- 24(cosh M - 1) 4M2g, = cash 2M( Y - 1) 

-2cosh2~~Y-~)+~osh2~Y 
and B 

2 
=; -M(X - 1) ._I__ 

sinh M ’ - (cash 2M - 2 cash M + l), (2.20) 

12M”fi = 4M2gl + {sinh M + 
3M(cosh 2M - 2 cash M + 1) 

.-.-~ 
2(cosh M - 1) 

S,(M, Y), (2.21) 
i 

4M2gz = cash 2M( Y - 1) + 2 cash 2M( Y - 4) + cash 2MY - (cash 2M + 2 cash M + I), (2.22) 

(. - (cash M + 1) 3M(cosh 2M + 2 cash M + 1) 
12Ms = 4M2g2 -j- TLsmh M ccoshM-IT) + 

- ____---__- ---_l__-.- 2(cosh M 1) 
s (M y> 

09, 
12 23) 

* - 

4M2g, = (1 - 2 Y)(l - cash 2M) + cash 2M( Y - 1) - cash 2M Y, (2.24) 

12M”f, = 4M2g, - 4(1 - cash 2M) 
(cash M + 1) 
____.~ sinh MY 

sinh M 
- cash MY + 1 - 2Y (2.25) 

sinh~+(b~+b$Ysinh~+ b~+~~+b~Y+b2Y2 S,(M,Y) 
i 1 + b, (cash M - 1) - 2(b, - b,)(eosh M - 1) Y - (b, + 26, Y)CdM, Y), (2.26) 

M2g5=M b~+~2+b~Y+b~Y~ 1 
I 

&(M, Ylj -k bz ( cash M + 1) -I- 26, (cash M + 1) Y - (bl + 2b, Y)C,(M. Y). (2.27) 
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2(1 - cash M)M2 

+ 6 ‘60, + 2b, t 36, + 
it 

b2 (9b, + 2lb3j + $ b,j &;;$&-ij 

t 

, 

+ 66, + 21b, -M2 1 2,2;;;;;;;ml) _ t 
6b, + 9b, + 96, + 2’6’ 

1 + 6 cash M 
~~~ 

M2 ! 2M(cosh M - 1) 1 x S,(M,.YI + 36 
smh M G (b, i- b4) f 66, + 36, + 2b4 + s2) Gi:$ “1 sinh MY 

+ 66, + ‘G2j Y + 3b, Y’ + 2b4Y3 
I 

[cash M( Y - 1) + 8 cash MY] - 

- $ [b, Y + b, Y2][sinh M( Y - 1) + 6 sinh MY] + 3 2t& ‘-‘,iiFF 

- -; (2b, + b,) - [6(2b, + 36,) - 2b,] 2x?;t_--l) 

+ b, + b7 + ~ 2b, 1 + 6 cash Mj ~~. ._~~- 
M M2 2(cosh M - l)i S”(M’ ‘) 

sinh MY + 3 [2b, Y + b, Y2] [sinh M( Y - 1) 

+ 6 sinh MY] - 2 Y[cosh M( Y - 1) + 6 cash MY], 

> (2.28) 

g, = ; dJl’t2 _ Y i d,, (2.29) 
r-0 I=0 

(34 + 64 + IOd, + 15d, +) Ai (60d, +- 18Od,j’c 
_; 

(- & do + 1 dI + & d, + + d3 + gz d4) 

-I- ;p (2do + 3d, + 4d, + 54 + 6d,) + b4 (24d, + 60d, + 12Od,) 

720d4 
+ M6 +] S,(M, Y) + pi<;xM 

[ 

1 
(6d, + 12d2 + 20d3 + 30d4) 

(2.30) 

4 

+ &.(120d3 + 36Od,) sinh MY + Y I ic d _ !!! _ !!!!f?‘ T M2 M4 ) f=O 
- yzjd,+~+~~)-y3(d~+~~)_d3y4_d4y5. 1 
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Here S&f, Y) = sinh M( Y - 1) - sinh MY, 
S&M, Y) = sinh M( Y - 1) + sinh MY, 
C,(M, Y) = cash M( Y - 1) - cash MY, 
CI(M, Y) = cash M( Y - 1) + cash MY; in 
equations (2.27) 6 = - 1 when p = 4 and 6 = 
-t 1 when p = 5, and the constants b, are 

b,=l -+,b,=$,b,=$, 

and b,-2. 

Finally in equations (2.28) and (2.29) the con- 
stants d, are 

d, = 3 (6; + M2b0), dI = & bl(b, + M2b,), 

dz = i$ (4b; + M2(2b,b2 + b;)}, 

d, = i& M2b,b2 and d4 = & M2b;. 

The zeroth and first-order functions have been 
calculated from equations (2.17) to (2.30) for the 
following cases: M = 0, 2, 4 and 10, a = 0, 10, 
and 100 and h = - l( 1)2. These are tabulated 
at an interval of Y = O-2 in Tables 2 and 3. 
Note that in these tables and in all succeeding 
tables the figure in parenthesis, say n, denotes 
a multiplying factor of 10-n. 

2(c) Flow and heat transfer characteristics 
From section 2(b) quantitative information may 

now be deduced for flow and heat transfer 
characteristics such as the net mass flow, the 
induced magnetic flux density, and the heat 
transfer coefficients at the wall. 

(i) Net mass flow. The net mass flow per set 
per unit breadth of wall in the z-direction when 
the isothermal walls are a distance a cm apart is 
given by 

4 = &lrK~ (2.31a) 

where on using (2.14) we obtain 

0 = K J; U,d Y + K2 j-t U,d Y + 0(K3). (2.31 b) 

These integrals have already been evaluated in 
the determination of U0 and U, and are tabulated 
in Table 4 for a = 0, 10 and 100, h = -l(l)2 
and A4 = 0,2,4, 10,20,40, 100 and 200. 

(ii) Induced magneticflux density. From Ohm’s 
law as stated in equation (2.3) together with 
expressions (2.7) (2.10) and (2.14) the induced 
magnetic flux density B, = p,H, is evaluated 
to be 

B, = B,,GM [:(D, - U,)d Y 

+ K J,’ (ii, - U,)d Y + O(K2)]. (2.32) 

Here GM = 4nu~,vG is the magnetic Grashof 
number and is the natural convection flow 
equivalent of the magnetic Reynolds number. 
The magnitude of B, can then be calculated 
using equation (2.31) and Tables 24. 

(iii) Heat transfer coeficients. The heat transfer 
coefficients at the wall can be expressed in the 
usual fashion by dimensionless Nusselt numbers. 
For the case when the walls are not at the same 
temperature i.e. h = 1 then at the wall y = 0 

1 ao 

- (A - l)K 87 1,=0’ (2’33) i- > 

and at the wall y = a 

(2.34) 

When the series expansion for 0 given by 
equations (2.14), (2.17) and (2.19) is substituted 
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Table 2 

4’ I M=O 1 M=2 / M=4 M= 10 ~ M=O / M=2 / M=4 1 M=lO 
___- 

6.25’(-2) 8.47’(-4) i 7.23;-4) 1.25:-4) 
7.25 (-2) 1.32 (-3) ~ 

4.894-4) 
1.10 (-3) 7.01 (-4) 

i 
144 (-4) 

744 (-2) 1.32 (-3) 1.10 (-3) 
j 

7.03 (-4) 144 C--4) 
6.71 (-2) 

,~ 
8.57 (-4) I 7.31 (-4) 4.95 (-4) 1.23 (-4) 

0 0 0 ) 0 0 

0 
1.07 (-1) 
1.63 (-1) 
1.70 (-1) 
1.21 (-1) 

0 

9.51 q-2) 
1.36 (-1) 

0.0 0.2 l.l2O(-l) 
0.4 1.76 (-1) 
0.6 1.84 (-1) 
0.8 1.28 (-1) 
1.0 0 

1.41 (-lj 
1.07 (-1) 

0 

__ 

Y ~ M=O M=2 M=4 j M=lO 1’ M-O M=2 1 M=4 / M= 10 
.‘- 

0 
7.61 (-2) 
1.11 (-1) 
1.11 (-1) 
7.61 (-2) 

0 

0 
6.73 (-2) 
9.24 (-2) 
9.24 (-2) 
6.73 (-2) 

0 

0 
4.32 (-2) 
490 (-2) 
4.90 (-2) 
4.32 (-2) 

0 

3.75 T-4) 
5.82 (-4) 
5.82 (-4) 
3.75 (-4) 

0 

3.204-4) 2.17 0 (-4) 1 5.4 0 (-5) 
4.85 (-4) 3.09 (-4) ~ 6.3 (-5) 

0.0 0.2 8.009-2) 
0.4 1.20 (-1) 
0.6 1.20 (-1) 
0.8 8.00 (-2) 
I.0 0 

I 
/ 

_- 

4.85 (-4) 
3.20 (-4) 

0 

3.09 (-4j : 6.3 (-5) 
2.17 (-4) 5.4 (-5) 

0 0 

- 

____ --__ 

uo. a=o, A=0 !i 49 a=o, h-0 

Y 1 M=O M=2 1 M=4 ) M=lO ~1 M=O M=2 1 M=4 / M=lO 

0.0 I 0 : 0 
1.03;-4) 8.8 9-5) 
1.58 (-4) 1 1.32 (-4) 

8.4 (-5) I 1.8 (-5) 

3.94 q-2) 2.39 q-2) 
4.89 (-2) 2.54 (-2) 
4.35 i-2j / 2.36 i-2j 
2.79 (-2) I 1.93 (-2) 

0 0 

0.2 ~ 4.80 (-2) 
0.4 640 (-2) 
0.6 / 560 (-2) 
0.8 3.20 (-2) 

1.0 i O ____ _ 

4.53 (-2) 
5.92 (-2) 
5.20 (-2) 
3.08 (-2) 

0 

1.57 (-4j 1.31 i-4j 
la0 (-4) 8.5 (-5) 

0 
~ O 

5.8 C-i) / 1.5 (-5) 
0 0 

- _____ 

43 a = 0, A= -1 I, 49 a = 0, A= -1 
I’ ._ 

I Y / M=O M=2 M=4 ~ M=lO ! M=O M=2 

0 
1.15 (-2) 
5.42 (-3) ~ 

-5.42 (-3)’ 
(-2) ~ 

-1.84 (-3) 
-1.15 -4.65 (-3) 

0 0 
I 

P _ ______. 

0 
2.6 (-5) 
4.2 (-5) 
4.2 (-5) 
2.6 (-5) 

0 

M=4 / M=lO 

0 
1.9 F-5) 9.0 (-6) 
2.8 (-5) 1.1 (-5) 
2.8 (-5) 1.1 (-5) 
1.9 (-5) 9.0 (-6) 

0 ! 0 

0.0 0.2 I 1.: (-2) 
0.4 8.0 (-3) 
0.6 ~ -8.0 (-3) 
0.8 ~ 

1 
-160 (-2) 

1.0 0 
/ 

0 
1.46 (-2) 
7.17 (-3) 

-7.17 (-3) 
-1.46 (-2) 

0 
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Table 2 (contd.) 
-. ~. 

/! .. 
-A-A -..zzz-f_ 

&h a = 10, x = 2 u,, a = 10, h = 2 

Y / M==O M=2 ’ Mz4 

0.4 
0.6 
0.8 
f-0 

4, a = 10, x = 1 a = 10, it = 1 

M=2 i M=4 / M=lO Y M-O 

0.0 1 0.2 1-574-l) 
0.4 244 (-1) 
0.6 244 (-1) 
0.8 1.57 (-1) 
I.0 0 

M=4 / M=lO M=O I M=2 
/ 

1.494-_1) 
2.26 (-1) 
2.26 (-1) 

1*62;-3) 1 1*38;-3) 
2.52 (-- 3) ; 2.09 f-3) 

9.26 4-4) 2.21 q-4) 
1.32 (-3) 
1.32 (-3) / 

2.64 (-4) 
2.64 (-4) 

9.26 (-4) 2.22 (-4) 
0 0 

0 
I,31 ;-I) 8.29 (-2) 
1.87 (-1) 969 (-2) 
1.87 (-1) 9.69 (-2) 2.52 (--3j 2.09 (-3j 

1.62 (-3) 1.38 (-3) 
0 0 

1.49 (-1) 1 1.31 (-1) 8.29 t-2) 
0 0 0 

_ 

. 
Ii 

4, a = 10, x = 0 

M=O / M==2 j M=4 / M==lO 

l&o, a = 10, x = 0 

Y j M=O / M=2 M-4 / M==lO 

0.0 

;:t 

0.6 
O-8 
1.0 

1.25:-1) 
1.88 (-1) 
1.80 (-1) 
1.09 (-1) 

0 

119q- 1) 1.03:-l) 6.36 “(-2) 9.46 9-4) 8.05 O(-4) 54Oq-4) 
1.74 C-1) 1.43 C-1) 7.33 (-2) 1.47 f-3) 1.22 C-3) 7.71 (-4) 

0 
1.30 (-4) 
1.56 (-4) 
1,53 (-4) 
1.29 i-4) 

0 

1.67 (-lj 1.38 i-lj 7*15 i-2j 1.46 i-3j I.22 i-3) 7.70 (-4j 
la4 (-1) 9.19 f-2) 590 (-2) 938 (-4) 7.98 (-4) 5.36 (-4) 

0 0 0 0 0 0 

~ __, 

UOl a=lO, X=--l Ii 4. a=lO, h----l 

y / M=O jM=2r. M==4 / M=lO I/ M=O M=2 / M-=4 M= 10 

0 
032 
0.4 

8:; 
1.0 

0 
9.33 (-2) 
1.32 (-1) 
1.16 (-1) 
6.13 (-2) 

0 

8.78 Y-2) 
1.22 (-1) 
1.07 (-I) 
5.86 (-2) 

0 

0 
7.55 (-2) 
9.97 (-2) 
8.88 (-2) 
5.25 (-2) 

0 

4.61 (-2) 
3*50 (-2) 

0 

4.73 Y-4) 4,03 O(-4) *.7oq-4) 
7.31 (-4) 6.09 (-4) 3.85 (-4) 
7.29 (-4) 6.06 (-4) 3.83 (-4) 
463 (-4) 3.95 (-4) 2.65 (-4) 

0 0 0 

6.4 ‘t-5) 
7.6 (-5) 
7.5 (-5) 
6.3 (-5) 

0 

-A _.-._ ---_ 
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Table 2 (contd.) 

II 
i! 111. a = loo, A=2 ‘47, a = 100, x=2 

M=O M=2 / M=4 

I 

S.8S0(-I) *.39q-1) ( 7.35~~I) 
1.42 1.31 1.08 

I I.08 
ii: (-1) j i:E (-1) i 7.47 (-I) 

M=lO ‘~ M=O M=2 M=4 Y 

o-o 
0.2 
0.4 
0.6 
0.8 
1.0 

4.59;-1) 5.67 q-2) 4.82 q-2) 
5.52 (- 1) 8.82 (-2) 7.32 (-2) 
5.53 (-1) 8.82 (-2) 7.32 (-2) 
4.64 (-1) 5.67 (-2) 4.82 (-2) 

0 0 0 

0 
3.22 (-2) 
4.62 (-2) 
4.62 (-2) 
3.23 (--2) 

0 

0 
7.63 (-3) 
9.02 (-3) 
9.03 (-3) 
7.63 (-3) 

0 O I O 0 

Id”, a = 100, x = 1 4, a = 100, X=1 

I- 
-- 

I 
__ 

._ 
0 0 

8.08 (-1) 7.07 (-1) 
1.26 1.03 

M=2 i M=4 1 M=lO M=O ~ M=2 M=4 

0 ‘i 0 0 0 
4.40 (-1) 5.22 (-2) 1 4.44 (-2) 2.97 (-2) 
5.28 (-1) 8.12 (-2) / 6.74 (-2) 4.25 (-2) 
5.28 (-1) 8.12 (-2) 6.74 (-2) 4.25 (-2) 
4.40 (-1) 5.22 (-2) 4.44 (-2) 2.97 (-2) 

0 0 0 ( 0 

_ ____.~ 

1.26 1.03 
8.08 (-1) 7.07 (-1) 

0 0 

M=O M= 10 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

8.53 ‘(- 1) 
1.36 
1.36 
8.53 (-1) 

0 

0 
7.01 (-3) 
8.29 (-3) 
8.29 (-3) 
7.01 (-3) 

0 

110, a=lOO, A=0 Ul. a = 100, x = 0 

M=O M=2 1 M=4 1 M=lO I/ M=O i M=2 M=4 M= 10 

4.07 q-2) 2.72 ‘(-2) 
6.19 (-2) 3.90 (-2) 
6.19 (-2) 3.90 (-2) 
4.07 (-2) 2.72 (-2) 

0 0 

0.0 0 
0.2 8.21 (-1) 
0.4 1.30 
0.6 1.30 
0.8 8.05 (-1) 
I.0 0 

0 1 0 
7.77 (-1) 6.79 (-1 
1.20 9.91 (-1 

6.41 q--3) 
7.59 (-3) 
7.59 (-3) 
6.41 (-3) 

0 

1.20 9.86 (-1) 5.03 (-1) 7.45 (-2) 
7.63 (-1) 6.68 (-1) 4.16 (-1) 4.78 (-2) 

0 0 0 0 

% a = 100, A= -1 4 1 
a = loo, A= -1 

-1- 

I ._ 
.I’ / M=O 1 M=2 M=4 M= 10 M=O M=2 1 M=4 / M=lO 

0 
3.72 (-2) 
5.66 (-2) 
5.65 (-2) 
3.71 (-2) 

0 

2.49’(-2) 5.85 ‘(-3) 
3.57 (-2) 6.92 (-3) 
3.56 (-2) 6.92 (-3) 
2.48 (-2) 5.84 (-3) 

0 0 

4.02 ‘(-1) 4.38 ‘(-2) 
4.81 (-1) 11 ~~ 6.81 (-2) 
4.77 (-1) 6.81 (-2) 
3.92 (-1) 1 4.37 (-2) 

0 0 

0.0 0.2 7.89 “(- 1) 7.47 9- 1) 
0.4 1.25 1.15 
0.6 1.23 1.14 
0.8 7.57 (-1) 7.17 (-1) 
1.0 

O I O _- 

6.52 “(- 1) 
9.48 (-1) 
9.37 (-1) 
6.29 (-1) 

0 
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Table 3 

0.0 1.0 1.0 1.0 
0.2 1.2 1.0 0.8 
0.4 1.4 
0.6 1.6 1.0 0.4 

- 

-- 

-- 

- 

@I, a = 0, x=2 0 17 a=o, h=l 
-,- _- 

_- 
y /M=O M=2 ~ M=4 1 M=lO M=O M=2 M=4 

4.53O(-3) 4wq-3) 
5.20 (-3) 4.70 (-3) 
5.20 (-3) 4.70 (-3) 
4.53 (-3) 4% (-3) 

0 0 

0 
3.05 (-3) 
3.66 (-3) 
3.66 (-3) 
3.05 (-3) 

0 

M= 10 

1.16 q-3) 
1.47 (-3) 
1.47 (-3) 
1.16 (-3) 

0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

1.01 q-2) 
1.19 (-2) 
1.18 (-2) 
1.05 (-2) 

0 

8.97 9-3) 6.78 
1.07 (-2) 
1.07 (-2) 

~ 
o-3) 

8.29 (-3) 

9.36 (-3) 1 
8.36 (-3) 
7.07 (-3) 

0 , 0 
I -___ 

2.57 q-3) 
3.30 (-3) 
3.39 (-3) 
2.71 (-3) 

0 

-- 

0 I’, a=o, A=0 0 17 a = 0, A= -_I 

I- Y / M=O M=2 i M=4 I &f=lO M=O ( M=2 / M=4 M= 10 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

1.28 ‘(-3) 
1.41 (-3) 
1.43 (-3) 
1.13 (-3) 

0 

ld44-3) 8.71 q-4) 3.42 q-4) 
1.28 (-3) 1.02 (-3) 4.20 (-4) 
1.29 (-3) 9.92 (-4) 3.88 (-4) 
1.01 (-3) 7.74 (-4) 2.96 (-4) 

0 0 0 

0 
2.38 (-4) 
3.55 (-4) 
3.55 (-4) 
2.38 (-4) 

0 

1.13 q-4) 
1.46 (-4) 
1.46 (-4) 
1.13 (-4) 

0 

2.97’(-4) 2.800(-4) 
4.87 (-4) 4.46 (-4) 
4.87 (-4) 4.46 (-4) 
2.97 (-4) 2.80 (-4) 

0 0 

@I, a = 10, x = 2 0 I, a = 10, x = 1 

M=O M=2 M=4 / M=lO M=O M=2 M=4 M= 10 

2.96’(-2) 2644-2) 1.98’(-2) 7.34’(-3) 1.94’(-2) 1734-2) 1.29’(-2) 4.77;-3) 
3.49 (-2) 3.15 (-2) 244 (-2) 9.52 (-3) 2.26 (-2) 2.04 (-2) 1.58 (-2) 6.19 (-3) 
3.48 (-2) 3.15 (-2) 2.45 (-2) 9.67 (-3) 2.26 (-2) 2.04 (-2) 1.58 (-2) 6.19 (-3) 
3.03 (-2) 2.70 (-2) 2.03 (-2) 7.54 (-3) 1.94 (-2) 1.73 (-2) 1.29 (-2) 4.77 (-3) 

0 0 0 0 0 0 0 0 

___- 

Y 
_. 

0.0 
o-2 
0.4 
0.6 
0.8 
1.0 

i 
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Table 3 (contd.) 
~____~_ 

I! 
@I, a = 10, A=0 0 Ir a = 10, A= 1 

_-__ 

J j M=O Me2 

0.0 ~ 0.2 1.l4o(-2) 
0.4 ~ 1.31 (-2) 
0.6 
0.8 
1.0 

- 

-. 

1.02 q-2) 
1.19 (-2) 
1.19 (-2) 
9.83 (-3) 

0 

M=4 

7.62 ‘(-3) 
9.23 (-3) 
9.19 (-3) 
7.37 (-3) 

0 

_‘_ 

M=lO ;, M=O 
I 

M=2 ) M=4 
II 

2.80’(-3) ’ 5.75:-3) 
3.62 (-3) 6.55 (-3) 
354 (-3) 6.73 C-3) 
2.69 (-3) ‘I I 5.26 t-3) 

0 0 

/ 

5.11 q-3) 1 3.83’(-3) 
5.94 (-3) 4.65 (-3) 
6.04 (-3) 
4.69 (-3) 

~ 4.61 (-3) 
! 3.54 (-3) 

0 0 

__ ____- 

0 
1.41 f--3) 
I.84 f-3) 
I.73 f--3\ 
1.29 (-3) 

0 

@I, a = 100, x=2 8,. a=lOO, A=1 
- -__-__ .__-_, - __-__ ----,--- 

M=O / M=2 M=4 1 M=lO 1 M=O M=2 I M=4 M=lO 1 

0.0 ’ 0 I 0 0 0 0 0 ~ 0 
0.2 6.74 (-1) 5.99 (-1) ~ 4.47 (-1) 6.22 (-1) 5.52 (-1) ’ 4.12 (-1) 1.48 (-1) 
0.4 / 7.96 (-1) 7.18 (-1) ’ 5.54 (-1) 7.33 C-1) 6.61 (-1) 5.10 (-1) 1 1.96 C-1) 
0.6 7.95 (-1) 7.17 (-1) ; 5.54 (-1) 7.33 (-I) 6.61 (-1) 5.10 (-1) 1.96 C-1) 
0.8 6.77 (-1) 

i 

6.01 (-1) / 4.49 (-1) 6.22 (-1) C-1) 
1.0 0 0 ~ 0 0 

5.52 (-1) I 4.12 (-1) 1.48 

I 0 0 0 0 1 , 
I I I ! / 

@I, 

Y / M=O 

0.0 ’ 0.2 5.714- 1) 
0.4 6.72 (-1) 
0.6 6.73 (-1) 
0.8 5.69 (-1) 
1.0 0 

a = 100, x = 0 

M=2 / M=4 M= 10 

I 
5.07’(-1) ~ 3.78’(-I) 1 1.36’(-1) 
6.06 (-1) / 4.68 (-1) 1.80 (-1) 
6.07 (-1) / 4.68 (-1) 1.79 (-1) 
5.05 (-1) ~ 3.77 (-1) 1.35 (-1) 

O I O i O _ 

@I, a=lOO, A=-1 

M=O M=2 1 M=4 M= 10 

5.23’(-1) 4644-l) 3.46’(-1) 
6.14 (-1) 1 5.54 (-1) 4.28 (G-1) 
6.16 (-1) 
5.18 (-1) 

0 

5.55 (-lj 4.28 (-lj 
460 (-1) 3.43 (-1) 

0 0 

0 
1.24 (-1) 
1.65 (-I) 
1.64 (-1) 
1.14 (--I) 

0 
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Table 4 

- 
I 
I/ J-A u1 d Y, a = 0 s; u. d Y, a = 0 

A= -1 h=2 j h=1 h=O ~ A=-1 

0 9.01 (-4) / 3.97 (-4) 1.07 (-4) 3.31 (-5) 
0 7.60 (-4) ’ 3.35 (-4) 9.1 (-5) 2.9 (-5) 
0 i 5.00 (-4) 2.20 (-4) 6.0 (-5) 2.0 (-5) 

: ‘, 1 2.1 1.15 (-4) (-5) 1 ~ 9.0 5.1 (-5) (-6) 

i 

j 3.0 1.4 (-5) (-6) 5.0 1.0 (-6) (-6) 
0 1 3.0 (-6) I.0 (-6) 0 0 
0 - 

- q I ~ 

- 

o - 1 
I 

/ 1 
___.-..._ 

X=1 A=0 M h=2 

0 1.25 (-1) 
2 1.17 (-1) 
4 1.01 (-1) 

z 
40 ~ 

6.00 3.37 (-2) (-2) 
1.78 (-2) 

loo 7.35 (-3) 
200 / 3.71 (-3) 

8.33 (-2) 
7.83 (-2) 
6.72 (-2) 
4.00 (-2) 
2.25 (-2) 
1.19 (-2) 
4.90 (-3) 
2.47 (-3) 

4.17 (-2) 
3.91 (-2) 
3.36 (-2) 
2m (-2) 
1.12 (-2) 
5.94 (-3) 
2.45 (-3) 
1.24 (-3) 

j&dY, a= 10 

A=0 / i=-1 

9.98 (-4) 4.97 (-4) 
8.40 (-4) 4.18 (-4) 
5.47 (-4) 2.73 (-4) 
1.21 (-4) 6.0 (-5) 
2.1 (-5) 1.0 (-5) 
3.0 (-6) 1.0 (-6) 

- - 
- - 

-- 

M h=2 x=0 
__ 

0 
2 
4 

10 

ii 
loo 
200 

1.67 (-1) 1.25 (-1) 
1.56 (-1) 1.17 (-1) 
1.33 (-1) 9.97 (-2) 
7.77 (-2) 5.77 (-2) 
4.28 (-2) 3.15 (-2) 
2.22 (-2) 1.63 (-2) 
9.06 (-3) 6.61 (-3) 
4.56 (-3) 3.32 (-3) 

8.33 (-2) 
7.79 (-2) 
6.61 (-2) 
3.77 (-2) 
2-03 (-2) 
1.03 (-2) 
4.16 (-3) 
2.08 (-3) 

2.65 (-3) 1.71 (-3) 
2.23 (-3) 1.44 ‘(-3) 
1.46 (-3) 9.42 (-4) 
3.27 (-4) 2.10 (-4) 
5.7 (-5) 3.6 (-5) 
8.0 (-6) 5.0 (-6) 

- - 
- - 

2.08 (-1) 
1.95 (-1) 
l-67 (-1) 
9.77 (-2) 
5.40 (-2) 
2.82 (-2) 
1.15 (-2) 
5.79 (-3) 

.!” 

&u,dY, a= 1OO J:u,dY, a = loo 

8.33 (-1) 
7.79 (-1) 
6.61 (-lj 
3.77 (-1) 
2.03 (-1) 
1.03 (-1) 
4.16 (-2) 
2.08 (-2) 

11 
A=-1 // x=2 / 

_‘- 
6.01 (-2) 
5.05 (-2) 
3.28 (-2) 
7.18 (-3) 
1.15 (-3) 
1.71 (-4) ! 

- 
- 

-I-_ 

x=1 

5.53 (-2) 
4.65 (-2) 
3.02 (-2) 
660 (-3) 
1.05 (-3) 
1.57 (-4) 

- 
- 

_- 

_- 

_- 

_- 
A= -_I A=2 A=1 x=0 A=0 

5.07 (-2) 
4.27 (-2) 
2.77 (-2) 
6.04 (-3) 
9.57 (-4) 
1.42 (-4) 

- 
- 

M 

0 
2 
4 

10 

2 
loo 
200 

9.58 (-1) 9.17 (-1) 
8,96 (--I) 8.57 (-1) 
7.62 (-1) 7.28 (-1) 
4.37 (-1) 4.17 (-1) 
2.36 (-1) 2.25 (- 1) 
1.21 (-1) 1.15 (-1) 
49o (-2) 4.65 (-2) 
2.45 (-2) 2.33 (-2) 

8.75 (-1) 
8.18 (-1) 
6.94 (-1) 
3.97 (-1) 
2.14 (-1) 
1.09 (-1) 
4.41 (-2) 
2.21 (-2) 

464 (-2) 
3.90 (-2) 
2.53 (-2) 
5.50 (-3) 
8.68 (-4) 
1.29 (-4) 

- 
- 
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into equations (2.33) and (2.34) the following expressions are obtained: 

Nu =!:i2~-2! 
0 2(h - 1) + (h-5) [l)s (a, h, M) + (h - 1) (A + 3 - &I ghaj$ 

- I), (a, h, M) + 240%~ (a2 + 8ah + 20h2 - 8a - 80X - 60) 

-+ akZ (a” + 8ah - 12h2 + 16a - 24/\ + 36) - FkG (a” - 8aA + Sa)] , 

and 
8a NU _ (2h-a-2) ~_- 

1 2(A - 1) f)o(Q,&M)+(h-f) 3hil--j-@ 
i 

- D, (a, h, M) - 2-4:~~ (a” - 8ah - 60X2 + 8a - 8Oh + 20) 

- y4’12 (a2 + 8aX - 12X2 + 16a - 24h + 36) - &S (a" - 8a.h + 8a) 
1 

, 

t (2.35) 

and 

Dl(u,A,M)=(h-1) 6+6h+a---- 
j’(M” - 4) sinh 2M + M(cosh 2M - 1) -t 8 sinh Mi_ 

---- 
48kP sinh M (cash M - 1) _I . 

When the walls are at equal temperature i.e. 
h :-= 1 the Nusselt number may be defined as 

Nu = Nuo = Nu, :=_ 

(2.37) 

On using the results of section 2(b) we obtain 
when h = 1, 

Nu = z + K Do (a, 1, M) I i 1 

1 

1 
+ aOj2 (a2 - 120) I (2.38) , 

+ &-, a(a + 24) - 

The Nusselt number Nu,,,~(~~ due to ordinary 
conduction and Nu~,~(~) due to dissipation effects 
have been evaluated for a = 0, 10 and 100, 

h = - l(l)2 and M = 0, 2, 4, 10, 50(50)200 and 
are given in Table 5. The actual wall Nusselt 
number is then given by 

Nu ,,,1 = Nu,,,@) + K Nu,,,(‘) + 0(K2). (2.39) 

2(d) Discussion 
The velocity and thermal profiles for fully 

developed flow depend on the four parameters 
K, a, X and M. Let us first consider M fixed and 
examine general trends due to variations in 
K, a and h. These are the same as in the magnetic 
field-free case and have been summarized by 
Ostrach [If as follows : 

(i) An increase in either the wall temperature 
difference ratio X or the heat source parameter 
a increases the velocity, net mass flow and 
temperature. 

(ii) The viscous dissipation was found to alter 
appreciably the velocity and temperature profiles 
in some cases, showing that as ii; was increased 
(a and X remaining fixed) then the velocity was 
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Table 5 

Nu, to) 
si 
~1 Nu, to) 

h j a=0 /a=lO/a=loo a=O/ a=10 / a=100 

3.5 I 26 

Nu,(‘), a = 0 Nu,(‘), a = 0 
-I- 

h=2 1 h=l / h=O A= -1 A=2 

8.61 (-2) 
8.14 (-2) 
7.08 (-2) 
4.35 (-2) 
1.07 (-2) 
5.49 (-3) 
2.78 (-3) 

h=l h=O h= -1 

4.16 (-2) -1.39 (-2) -1.39 (-3) 
3.91 (-2) -1.28 (-2) -1.27 (-3) 
3.35 (-2) -1.07 -1.01 
2.00 (-2) i 

(-2) (-3) 
-5.80 (-3) -4.35 (-4) 

4.80 (-3) -1.21 (-3) -2.9 (-4) 
2.45 (-3) -6.24 (-4) -8.0 (-5) 
1.23 (-3) -3.12 (-4) -2.0 (-6) 

M 

0 
2 
4 

10 
50 

loo 
200 

-1.02 (-1) 4.16 (-2) 8.33 (-3) 
-9.59 (-2) 3.91 (-2) 7.99 (-3) 
-8.13 (-2) 3.35 (-2) 7.15 (-3) 
-4.70 (-2) 2.00 (-2) 4.63 (-3) 
-1.09 (-2) 4.80 (-3) 1.18 (-3) 
-5.54 (-3) 2.45 (-3) 6.08 (-4) 
-2.43 (-3) 1.23 (-3) 3.27 (-4) 

1.39 (-3) 
1.27 (-3) 
1.01 (-3) 
4.35 (-4) 
2.9 (-4) 
8.0 (-5) 
2.0 (-6) 

Nuo(‘), a = 10 Nu, cl), a = 10 
.- -- 

-- 
M h=2 x= 1 

_I. 
A= -1 A=2 A=0 A=0 

1.03 (-1) 2.74 (-2) 
9.53 (-2) 2.52 (-2) 
7.96 (-2) 2.04 (-2) 
4.27 (-2) 2.53 (-3) 
9.17 (-3) 1.87 (-3) 
4.49 (-3) 9.03 (-4) 
2.98 (-3) 5.95 (-4) 
2.23 (-3) 4.43 (-4) 

il A= -1 
--_ 

1.75 (-2) 
1.66 (-2) 
144 (-2) 
8.54 (-3) 
2.13 (-3) 
8.86 (-4) 
5.88 (-4) 
5.80 (-4) 

-___ 

-I- 

2.75 (- 1) 
2.56 (- 1) 
2.16 (-1) 
1.22 (-1) 
2.70 (-2) 
1.36 (-2) 
9.06 (-3) 
6.46 (-3) 

1.67 (-1) 8.72 (-2) 
1.56 (-1) 8.19 (-2) 
1.32 (-1) 7.01 (-2) 
7.56 (-2) 4.06 (-2) 
1.67 (-3) 8% (-3) 
8.39 (-3) 4.45 (-3) 
5.60 (-3) 2.97 (-3) 
4.19 (-3) 2.41 (-3) 

O 
2 
4 

10 
50 

loo 
150 
200 

2.48 (-1) 1.67 (-1) 
2.33 (-1) 1.56 (-1) 
2.00 (-1) 1.32 (-1) 
1.17 (-1) 7.56 (-2) 
2.67 (-2) 1.67 (-3) 
1.34 (-2) 8.39 (-3) 
9.03 (-3) 5.60 (-3) 
6.78 (-3) 4.19 (-3) 

I 

Nu,(‘), a = IO0 Nuotl), a = 100 

M x=2 ! h=l / x=0 i h=--1 h=2 

/ 
0 5.50 5.09 1 4.70 2.16 5.62 
2 5.13 4.74 I 4.37 2.01 5.23 

__ 

_. 
A= 1 x=0 j X=-l 

-_ 
4.59 
4.28 

5.09 
4.74 
3.98 
2.19 
4.48 (-1) 
2.21 (-1) 
1.47 (-1) 
1.10 (-1) 

4 1 4.32 
10 2.40 
50 4.95 (-1) 

loo 2.45 (-1) 
150 1.63 (-1) 
200 1.22 (-1) 

, 

B 

3.98 3.66 
2.19 2.00 
4.48 (-1) 4.04 (-1) 
2.21 (-1) 1.99 (-1) 
1.47 (-1) 1.32 (-1) 
1.10 (-1) 9.85 (-2) 

1.68 4.39 
9.08 (-1) 2.42 
1.81 (-1) 4.96 (-1) 
8.88 (-2) 2.45 (-1) 
5.88 (-2) 1.63 (-1) 
4.39 (-2) 1.30 (-1) 

3.60 1.62 
1.98 8.91 (-1) 
4.02 (-1) 1.80 (-1) 
1.99 (-1) 8.86 f-2) 
1.32 (-1) 5.87 (-2) 
1.08 (-1) 4.91 (-2) 

L I = 
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increased and the heat transfer at the wall was 
greatly changed by this effect. 

However when K, a and h remain fixed and 
M increases the main feature is a reduction in 
magnitude of the velocity and temperature. 
The reason for this is as follows. An increase in 
M, i.e. the applied magnetic field strength causes 
greater interaction between the fluid motion and 
the magnetic field and hence an increase in the 
Lorentz force. Since this force opposes the 
buoyancy force the velocity will be decreased 
leading to a reduction in the viscous and Joulean 
dissipation and so a reduction in the tempera- 
ture. The influence of large magnetic field on the 
net mass flow and heat transfer coefficients is 
readily seen from Tables 3-4. Thus if a = 100. 
A :== 1, K = 10 and M =: 200 then 4 is reduced 
to 2 per cent and Nu to 50 per cent of the 
magnetic field free case. In particular as M + m 
then cj -+ 0 and the temperature profile tends 
to the ordinary conduction profile. Note also 
that when X x 1, i.e. equal wall temperatures 
the velocity profile, evaluated neglecting dissipa- 
tion effects, is similar to that in the Hartmann- 
Lazarus flow. Moreover as in the Hartmann- 
Lazarus flow a fluid boundary layer develops 
near the wall as M increases, and the velocity 
is then virtually constant across the gap and 
varies rapidly to zero near the walls. 

It remains now to apply the above results to 
liquid metals such as mercury and liquid sodium. 
As an example the following natural convection 
flow configuration is chosen with mercury as the 
fluid. The plates, maintained at constant 
temperature 25°C are taken to be 1 cm apart 
and the hydrostatic temperature to be 20°C. 
Thus CL = 0, X = 1, a = 1 and Bw = 5°C. From 
Table 1 we obtain P = 2.68 10p2, KA = 1.28 
lo-‘, G = 6.99 1Oj and the applied magnetic 
flux density B, = 384 M gauss. Since K = 
PG KA = 2.4 1O-3 dissipation effects will be 
negligible and so the temperature across the gap 
will be constant and equal to 25°C. From Table 4 
we may obtain the actual average velocity in 
cm/set for various B,. Hence if B, = 0, ii = 
66 cm/set; if B, = 76.8 gauss, zi = 62 cm/set; 
if B, = 3.84 lo2 gauss, d = 32 cm/set; if 
B, = 1.54 lo3 gauss, d = 9 cm/set and finally 
if B, = 7.68 lo3 gauss, U = 2 cm/set. These 

results imply imply that for mercury a field of 
order lo4 gauss is necessary to reduce the flow 
rate to one per cent of that in the magnetic field 
free case. When liquid sodium is used as the 
fluid the field necessary for the same reduction is 
not quite so large, as shown by the following 
example. We consider the flow configuration for 
which T, = 200°C 0{,: = 50°C. h r= 1 and 
a = 1. From Table I P = 7.38 10mm9. Kxi :--: 
1.61 IO-“. G = 4.37 105, K = 5.295 10-j and 
B, := 7.84 M gauss. Again from Table 4 if 
B, = 0. ~7 == 181 cmisec: if B, == 15.7 gauss, 
z? = 170 cm/set; if B, = 78.4 gauss, fi 109 
cm/set; if B, = 3.14 10” gauss, LI = 25.8 cmjsec. 
Furthermore as in the previous example for 
mercury heat is transferred across the gap by 
conduction alone. giving T := 250°C for 
0-c Y< 1. 

The induced magnetic flux density B, is not 
without interest. Consider the magnitude of 
B, for the mercury flow configuration cited 
above. From Table 1 the magnetic viscosity 
x = (1/4nupL,v) = 6.74 10” and so the magnetic 
Grashof number G_v~ = 0.104. If we choose M = 
10 then the applied magnetic flux density 
B, = 384 gauss ; from Table 4 if a --= 0, h -= 1, 
M == 10 then ti0 = 4 lo-“, also [fU,,dY may 
be evaluated by numerical integration at Y === 
0(0.2) I.0 using the values of U,, given in Table 2. 
Since K = 2.4 lo-” then from equation (2.32) 
we obtain that B, = 0, O-12, 0.04, 0, -- 0.04, 
- 0.12, 0 gauss at Y = O(O.l)l cm. The magni- 
tude of the induced field is thus small in com- 
parison with the applied magnetic field for this 
particular flow configuration. Moreover in this 
example B, is small in comparison with the 
earth’s magnetic field for which B,(“) = 0.44 
gauss and B&E) = 0.17 gauss approximately in 
the British Isles. 

3. EXAMPLE II: ON THE TWO-DIMENSIONAL 

NATURAL CONVECTION FLOW DUE TO AN 

ELECTRIC CURRENT IN A HORIZONTAL CIR- 

CULAR TUBE FILLED WITH AN ELECTRICALLY 

CONDUCTING VISCOUS FLUID 

3(a) Statement of problem and governing 
equations 

The special example to be considered is as fol- 
lows: A long thin walled circular tube (made of 
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non-conducting material) is filled with electrically 
conducting viscous fluid and placed with its 
axis in a horizontal position. A direct current 
of mean density J, per unit of area flows axially 
through the tube whose outer surface is 
maintained at constant temperature T,, i.e. the 
temperature of the coolant. Moreover the 
coolant is assumed to be non-magnetic and a 
non-conductor. The equations describing the 
resulting steady two-dimensional natural con- 
vection flow for the central portion of the tube 
(i.e. at sufficient distance from either electrodes 
at the ends of the tube) are given by equations 
(1.10) to (1.16) when Q = 0. 

It is convenient to use cylindrical polar co- 
ordinates Y, + and 1. The z axis is taken to be the 
axis of the cylinder and the angular co-ordinate 
I$ is measured from a vertical plane through this 
axis; the velocity components are denoted by 
u, and u+ and the magnetic field components 
by H, and H+. The basic equations (1.10) to 
(1.16) transformed to cylindrical polar co- 
ordinates give for the fluid or region (1) the set 
of equations : 

+ ,f!g(T - T,) cm 4 - ; Jz& 

- pg(T - Ts) sin 4 + F J,H,, 
I 

J 

(3.1) 

(3.2) 

(3.3) 

and the energy equation is 

PC, 
i 

ar u$+ aT 
u, 5 + - -- 

r a+ 1 = kV2T + 2 + CD’, (3.6) 

where 

The viscous dissipation function @,’ takes the 
form 

@’ =2(~)a+2(;~+U;1)2 

+ ‘;!F+!gL~‘. ( 1 (3.7) 

For the coolant or region (2) the relevant equa- 
tions are: 

;$(rH+) -‘a$=O 1 

1 (3.8) 

and ;(rHr)+$+=O ] 

The boundary conditions are: 

u, = ~4 = 0, T = T,, /+.Hlr = P&G, 

HI,+ = H,+ on r = a, u,., zq, T, H, and 

H+ are finite at r = 0, 

also H,, and Hz4 + 0 as r + cc, 

1 (3.9) 

J 
where a is the radius of the tube and the suffices 
refer to the fluid and coolant respectively. 

(3.4) 

In formulating the boundary conditions (3.9) 
the thickness of the non-conducting tube wall 
is assumed to be small in comparison with the 
radius of the tube and thus there is little varia- 
tion in H, and H+ in the wall material and so 
the usual condition on H at the interface can be 
taken as between fluid and coolant. Furthermore 
at the interface there can be no normal flow of 
current, i.e. J, = 0, a condition which is satisfied 
by this type of two-dimensional solution; also 
at the interface the tangential component of 
E = E, must be continuous implying that in the 
coolant there is a constant electric field E, = E,. 
Note that these boundary conditions on H and 
E are identical with those for the Joule heating, 
by a direct current, of an inIinitely long cylindri- _ . _ _. _ 

= +% + &, H+ - u+ HAI, (3.5) cal wire placed in a non-conducting medium. 
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On choosing J,, 4naJ,, (Jia2/ku) and v/a as 
units of current, field strength, temperature and 
velocity respectively then the steady two- 
dimensional flow may be shown to depend on 
the following parameters: x = (1/47rupe), the 
magnetic viscosity; G = (figa5J~/kav2), the 
Grashof number; P = (pc,v/k), the Prandtl 
number ; and the dimensionless group 
RA = (/?gal:c,). Equations (3.1) to (3.9) are 
thus reduced to non-dimensional form using the 
following dimensionless independent and 
dependent variables : 

h R = f? and h = 2 ?? 
3R 4 R ag* (3.15) 

where the scalar potential @J satisfies Laplaces 
equation 

VW = 0. (3.16) 

The boundary conditions become 

@, 0, A finite at R = 0, 

aA a@ aA a@ 
y3$==R,iiR=--atR=l. 

id 
(3.17) 

HT 
ITR = 4”aJ,’ 

__ h’:4s, 
ro I 

(3.10) and 
I aa a@ 
~_ - 
R a4+" aR 

+OasR-+ x. 

where y = &pe, is the ratio of the magnetic 
permeability of the fluid to that of the coolant. 

whereas in section (2) K = PGK.4. 
In region (1) the stream function Y and the 

magnetic vector potential A = (0, 0, A) are 
defined by 

aA 
h* = - s 

respectively, then on eliminating the pressure Rd 
the governing equations become : 

a(y vv) 
V4Y + K a(R, +) = xc2 

a(A, V2A) _____ 
a(R, 9) 

a(R cos 4, 0) ___- 
- Xc --a(R, #) ’ 

(3.12) 

j, = - V2A = Ed + z ~j, (3.13) 
, 

V20 + (V2A)2 + g2 @’ 

+ pK a(R, 4) = O7 
(3.14) 

where 
a(& F) aE 1 aF aE aF ---.- 
a(R, 4) = 2X R a+ Ra+ aR’ 

and E = ~/PKAx is a convenient dimensionless 
group. For the coolant or region (2) the magnetic 
field is determined by 

The above equations (3.12) to (3.17) have a 
non-zero solution provided the dimensionless 
electric field E,’ is non-zero. Since the velocity 
and magnetic field components are independent 
of z then equation (3.5) implies that fJ‘.J:drd+ is 
constant and equal to the net flow of current 
crossing any tube cross-section in the :-direction. 
If this is chosen such that SS,J,rdrd4 =~ rra2Jo, 
then on integrating equation (3.13) over the tube 
cross-section and using Gauss’s theorem together 
with the boundary condition that Y = 0 at R : 
1, we obtain Ei = 1. Thus the dimensionless 
form of Ohm’s law is 

^ 
j, = _ V2_4 = 1 + z ;(&$ (3.18) 

> 

Consider now the order of magnitude of the 
parameter K, x and E relevant to liquid metals 
such as mercury and liquid sodium. If the radius 
of the tube is a cm and the applied current is i, 
amp/cm2 then from Table 1 we obtain for 
mercury (7’$ = 20°C): P = 2.68 10-2. Kit = 
1.28 lo-‘a, x = 6.74 106, E = 43-3/a, G = 
1.69 102a5i,2 and K = 58 10-7a6ii; and for liquid 
sodium (r, = 200°C): P = 7.38 IO-“. K,.I = 
1.61 10-Q, x = 2.18 105, E = 3.85104/a. and 
K = 1.74 10-11asi,2. Thus in general if a = O(1) 
and i, is small or moderately large then K < 1, 
x> r> 1,andxand~~maybeofthesame 
order of magnitude. In fact, as in Example I, the 
magnitude of K controls the viscous and Joulean 
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dissipation. The next section deals with series 
expansions in powers of K for Y, 0, A and @. 

3(b) Series expansion for small K 
We assume expansions of the type 

Y = Y0 + KY, + . . ., 
1 

A = A0 + KA, + . . ., 

0 = 0, -+- KO, + K20, f . . ., 
\ (3.19) 

and @ = Sp, + K@, + K2@, + . . . 
i 

J 

On substituting the equations (3.19) into (3.12), 
(3.14), and (3.18) and equating coefficients of 
like powers of K there results: 

Zero-Order functions 

V2A,+ 1 =O. 

V2@0 = 0, 

V20, + 1 = 0, 

v4yo + XE 
a(R cos #ho,) 

w, $) 

First-Order functions 

V2A + i %Yo, Ao) 
l x a(R, 4) = Oy 

v2q = 0. (3.25) 

= 

(3.20) 

(3.21) 

(3.22) 

0; (3.23) 

(3.24) 

‘7’0, + 2V2A,V2A, + -&2 @; 
6X 

vm @cl) o 

+’ a(R, 4) = ’ 
(3.26) 

v4y , vo, V”lu,) a(R cos 4, 0,) 
1 / 

am, $1 + x E a(R,Ty- 

- xta 
a& V2A D) 

WC ~9 

Second-Order functions 

V2A, -k 1 
X 

VW2 = 0, 

Wo, 4 
WC 4) + 

a(Yl, A,) 
--__ 

z(R, 9) 
= 0. (3.28) 

(3.29) 

V2@, + (V2A,)2 + 2V2A,V2A2 + & @; 

+ (3.30) 

In equations (3.26) and (3.30) @i and @; are the 
zeroth and first-order viscous dissipation func- 
tions, which can be obtained using (3.7), (3.10), 
(3.11) and (3.17). The boundary conditions for 
A,, Y,, 0, and Qn for n = 0, 1 and 2 are as 
follows : 

A,. O,, Y, are finite at R = 0, 
7 

aAn i (3.31) 
pz 
SR 

-3atR = 1, j 
24 / 

1 %@ a@ I 
and -L+O,_n+-OasR+ co. 

R a#~ aR i 
Here we have assumed that the fluid and coolant 
are non-magnetic, i.e. y = ~~~~~~~ = 1. 

The equations (3.20) to (3.31) are readily 
solved and higher approximations to A, Y, 0 
and @ could be obtained. However the inci- 
dental arithmetic involved in obtaining even the 
second-order functions indicates the limited 
usefulness of the series expansion (3.19). In the 
following we shall make use of the fact that 
x > c > 1 and x = 0( l 2) if a = O(1) and thus 
give only the important terms in the rather 
lengthy expressions to be derived for A,, Yn, 
0, and an. 

Consider first the zeroth-order functions de- 
fined by equations (3.20) to (3.23) and (3.31). 
These are: 

A0 = -$(R2 + a& Q0 = t$ + b,, 
1 

00 = a(1 - R2), 1 (3.32) 
X’ 

Y,, = x4 (R6 - 2R3 + R)sin 4, 
J 

where a, and 6, are constants of integration. 
Hence in the fluid 

ha(‘) = 0, h+ co) = R/2, j*(O) = 1, (3.33) 

XC 
uR(” = 384 (R4 - 2R2 + 1) cos 4, 

Ud(O) = - g4 (5R4 - 6R2 + 1) sin 4, (3.34) 

and for the coolant 

hR(0) Z 0, /Q(O) ZZZ L 
2R’ 

(3.35) 
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The first-order functions refine the above approximation by taking into account (a) the interaction 
of the fluid motion described by expression (3.34) and the magnetic field given by expression (3.33) 
and (b) the effect of viscous and Joulean dissipation. The solution of equations (3.24) to (3.27) 
subject to the boundary conditions (3.38) is: 

A1 = 96 x 384 
--E- (R’ - 4R5 + 6R3 - 4R) cos 4 + a,, @r = 96 ; 384 %;? - b,, 

(~(2 + xP)(R’ - 4R5 + 6R3 - 3R) cos $ + O(l)l,, I 

1 
(3.36) 

ul, = 240(3xi& x ~ ( c(R1° - 4R8 + 5R6 - 2R4) sin 24 - $(2 + xP)e(R’O - 8Rs 

+ 30R6 - 40R4 + 17R2) cos 2$ + 2e2(3Rs - 20R7 + 60R5 - 72R3 + 29Rj sin $I + O(l)), j 

where a, and b, are constants of integration. Thus in the fluid 

hR(l) zz 96 G 384 (R6 - 4R” + 6R2 - 4) sin 4, IQ(~) = Gjg4 (7R6 - 20Ra 

+ 18R2 - 4) cos 4, j, (1) = & (R5 - 2R3 + 

7 

i(3.37) 

RI ~0s 4, ; 

UR (‘) = (38;;;40 ~ {2xc(RS - 4R7 + 5R5 - 2R3) cos 2q5 - ~(2 + xP)(R” - 8R’ 

+ 30R5 - 40R3 + 17R) cos 24 + 2c2(3R8 - 20R6 + 60R4 - 72R2 + 29) cos + + O(l)}, 1 

1 
(3.38) 

(x~(10R~ - 32R7 + 30R5 - 8R3) sin 24 - ~(2 + xP)(IOR” - 64R7 ~ 

+180~5 - 160R3 + 34R) sin 24 + 2c2(27R* - 140R6 + 300R* - 216R2 + 29) sin 4 + O(l)>, 1 

and for the coolant 

hRP)X -< sin!! /r$(1, = .__E __ cos 4 

96 x 384 R2 ’ 96 x 384 R2 * 

For the second order functions j(i), A, and Q2 we obtain: 

jzW = --‘L {2py~(R’O - 4Rs + 5R” - 2R4) cos 24 - cxP(R’O - 8Rs + 30R6 
(384)2480 

- 40R4 + 17R2) cos 29S + 2c2(3Rs - 20R’ + 60R5 - 72R3 f 29R) cos + + O(E)), 

A2 = (384y2480 
x’ (12R12 - 70R1° + 140R8 - 105R6 + 28R2) cos 24 - 2; (3R12 
840 

- 35R1° + 210Rs - 525R6 + 595R4 - 273R*) cos 24 + ;; (R” - IOR” + 50R7 

- 120R5 + 145R3 - 86R) cos 4 $- O(E) + u2, 

and 

@* = %O(;84)2 
~cz~~!R+ + O(E) fb, 

J 

(3.39) 

1 

’ (3.40) 

1 
where a2 and b, are constants of integration. 
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It remains now to evaluate the second-order and 
temperature function 0, as defined by equations 
(3.30) and (3.31). The function 0, can be written 
as 

@ = @2,0 + @,,l -I- @2,2 (3.41) The functions O,, ,,, O,,, and O,,, are the tempera- 

where the functions satisfy, respectively, the ture distributions due to Joulean dissipation, 

equations viscous dissipation and heat transferred by 

V20,,, + (V2A,)2 + 2V2A,. V2A, = 0, 
convection, respectively. The boundary con- 
ditions are that O,,, is finite at R = 0 and 

VW,,, + CD; = 0, @,,,(I, #J) = 0 for p = 0, 1 and 2 respectively. 

The appropriate solutions of these equations are: 

2 

ozlo - 240;3;4)2 r 
x 
840 

(12R12 - 70R10 + 140RE - 105R6 + 23R2) cos 24 - z;(3R12 

- 35R10 + 210Rs - 525R= + 595R4 - 248R2) cos 24 + ; (Rll - 10Rs + 50R’ 

- 120R5 + 145R3 - 66R) cos d + O(E) 
> 

, 

1 
@2J = 15(jj4)3 

i 

__ 
& 

(693 RI3 - 2640 R’l + 3220 Rs - 1344 RT + 71 R3) cos 34 

- & (693 RI3 - 4920R11+ 14840Rs - 15120R’ + 3750R5 + 937R3) cos 34 + y 

x (6R12 - 35R1° + 80Rs - 60R6 + 9R2) cos 2qS - go (170R13 - 756R11 + 1225Rs 

- 910R’ + 280R5 - 9R) cos 4 - ; (30R12 - 192R’O + 525R0 - 640R= 

+ 360R4 - 83) + O(3), 

PXC 
o’s’ = 240(384)2 

2-f. 
840 

(12R12 - 70R’O + 140Rs - 105R6 + 23R2) cos 24 - s8; (72R12 

- 490R1° + 1540Rs - 2625R6 + 2380R4 - 877R2) cos 24 + $ (R” - IOR” + 50R’ 

- 120R5 + 145R3 - 66R) cos 4 - $1 (30R12 -- 216R1° + 675R8 - 1 140R6 + 1080R4 

- 540R2 + 111) + O(1) 

(3.42) 

In the next section the physical implications of these results are discussed. 
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3(c) Results and Discussion furthermore a radial magnetic field is set up 
which acts radially inward for the coolant and 
fluid if 0 < $J < x and radially outwards for 
TT < + < 2x. 

The second-order approximation adds little 
information to the above general trends. How- 
ever, provided K is small there will be an overall 
small increase in j along the vertical axis and a 
slight decrease in the neighbourhood of the 
stationary points. A slight decrease in the local 
temperature will also occur in this neighbour- 
hood [see expression (3.42)]. 

The above discussion gives some insight into 
the type of flow which may occur for large values 
of K. Thus we might expect isothermal cores on 
either side of the vertical plane. The fluid will 
rise in a narrow jet up the vertical plane and 
return down the wall on either side in a thin 
boundary layer which acts as a shield between the 
isothermal core and the wall. Furthermore there 
should be an increase in the local current density 
and temperature in the neighbourhood of (0*5,0> 
and a corresponding decrease at (0.5. .rr). 

Consider now the flow configuration as 
predicted by section 3(b) for small K. The 
zeroth-order approximation given by expressions 
(3.36) to (3.39) implies that the temperature 
distribution and magnetic field components are 
identical in form with those occurring in the 
Joule heating of an infinitely long solid cylinder 
with the same external conditions. Temperature 
gradients now exist in the fluid producing the 
buoyancy force resulting in the formation of a 
non-uniform fluid motion having convective 
cells on either side of the vertical plane 4 = 0, n 
(see expression (3.34)). The fluid rises along 
the vertical plane and flows downward along 
the cool wall on either side of the vertical plane; 
also the fluid is stationary at [l/(y’5), n/2] and 
[I/(\, 5). (3n)/2]. The vertical flow along 4 = 0, rr 
now distorts the magnetic lines of force, 
given by expression (3.37), in the vertical direc- 
tion. Thus we might expect an increase in local 
current density along the plane 4 = 0. This is 
borne out by the first approximation to j, (see 
expression (3.37)) where j, w has a maximum at 
[l/(x 5). 01. Along 4 = r the vertical flow 
distorts the magnetic lines of force away from 
the tube surface thus producing a maximum 
decrease in local current density at [l/(2/5), ~1: 

At this stage in the analysis the current 
density is no longer uniform over the tube cross- 
section and thus several modifications to the 
flow and temperature are necessary. Thus 
expression (3.36) for 0, implies a maximum 
increase at (0.45, 0) and a maximum decrease at 
(0.46. r) coinciding approximately with the 
maximum increase and decrease for j,(l) at 
[l/(1. 5). O] and [l/(2/5), ~1 respectively. A 
Lorentz force now exists opposing the buoyancy 
force and thus reduces in magnitude the velocity 
components. This is evident from the first-order 
velocity components as given by expressions 1 
(3.38). These components also imply that the 
“regions” of stationary fluid are now to the right 

E = 2 + (96,i K 

of [ l/( ~~‘5) n/2] and to the left of [l/(1/5), (3~)/2]. 
Finally as a consequence of the non-uniformity 
of current density there is an increase in the 
+-component of the magnetic field in the 
neighbourhood of the axis + = 0 and a decrease 
in the neighbourhood of CP = rr for both fluid 
and coolant [see expressions (3.37) and (3.39)J; flow was found to be 

Let us consider some thermal characteristics 
of the flow configuration when K is small. An 
average wall Nusselt number may be defined as 

(3.43) 

where T, - T, = (J; a2/4Ku) is the temperature 
difference between the axis of the tube and the 
coolant when the thermal energy is transferred 
by conduction alone. Using the various trans- 
formations given by equation (3.10) and the 
complete expressions for the O,, as derived in 
section 3(b) we obtain 

+ 5(384)” 
2-m (8~~ - 16~~ + 1)K2 + O(K3). (3.44) 

The axial temperature T, due to Joule heating 
and as modified by the non-uniform convection 
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J2 a2 
To = 7's + 4:~ 

14 
PK 

1 
1 + 3(384)2 

2 
~ 

+ 75(384)3 ( 
372~~ + (83 + 35OxP 

1 
(3.45) 

+ 175x2P2)c2 + ‘g8 K2 + O(K3) 1 J 
In Table 6 the actual temperature difference 
(To - T,), as calculated from expression (3.45), 
is compared with the fictitious temperature 
difference (Tc - T,) = (52 a2)/(Ku). The fluids 
taken were mercury and liquid sodium with 
coolant temperatures 20” and 200°C respectively; 
the diameter of the tube is 1 cm and the current 
density is i, amp/cm2. We note that for a tube 
of 1 cm diameter expression (3.45) is probably 
accurate for mercury if i, < 80 amp/cm2 and 
for liquid sodium if i, < 5103 amp/cm2. More- 
over within these current density limitations the 
average wall Nusselt number is 2 for both 
fluids [see expression (3.44)]. In view of this, and 
the small temperature differences existing 

Table 6 

Mercury (T, = 2O”C, ’ Liquid sodium (r, = 
dia. 1 cm) 200°C. dia. 1 cm) 

'0 T, - T, To - T,, i0 T, - T, To - T, 

between the fluid and the coolant when extremely 
large currents are applied, it seems unlikely that 
these results could be verified experimentally. 
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